这是场持久战,考验的不仅是选手的数学实力,更是坚忍不拔的意志力和心理承受能力,而这些选手大多未到法定成年年龄。
一切就快结束,结果即将揭晓。
国决下半场的考卷已发到各选手的手中,沈奇沉着应考。
国决上半场的考卷已于昨日全部密封,4.5个小时之后将揭封,连同下半场考卷共6道题一起批阅。
沈奇有信心,昨天的三道题他能拿到高分,但战斗尚未结束,他必须奋战到底,容不得一丝马虎。
考场外的沈奇生性活泼,一旦笔在手,卷铺开,他立即进入战斗状态,来,战吧!
国决下半场第一题,问P(x+iy)的复根是什么?
沈奇略作思考提笔便答。
整数、分数、无理数、负数和复数,数系的世界很简单,数系的世界很复杂。
除了复数这种流通于纸面及学术研究的虚虚实实存在,其他几个数系每天都被普通百姓所运用,数学看似缥缈高深,实则是社会市井里运用最广泛的一门基础学科。
数学可以用来买菜算账炒股理财,也可作为唯一语言和上帝交流窥探浩瀚宇宙,它高高在上,它遍布市井。
基于纯粹数系的证明运算是血统纯正的代数,虽然大多数的数学家更偏爱几何,但代数依旧有它的重要地位。
P(x+iy)的复根是什么?
它来自哪里,又要去往何处。
沈奇自学的第一本大学教材就是高代,他喜欢柯西,同时也很头疼柯西。
不管在哪个国家公布的历史伟大数学家排名榜中,柯西绝对能占据一席之地,他绝逼是15级参考模板,只不过系统抽样的是高斯。
沈奇之所以喜欢柯西,因为柯西以一己之力推动了代数向前发展,他对代数做出的贡献无与伦比。
国决下半场第一题,必然要用到柯西定理。
沈奇很快找到了两个根之差的乘积,代数语言称为判别式,它是一柄利刃,多项式和导数的线性组合在它面前不堪一击,溃不成军。
P(x+iy)就是个胆小的懦夫,它躲在x的多项式身后猥琐不出,依靠“判别式不为0”这座防御塔消磨沈奇的兵线。
“呵呵,你个渣渣以为我不敢越塔杀人?呵呵,你太天真了,P(x+iy)。”
沈奇大刀阔斧放出大招,他顶着护盾“达朗贝尔法则”配合柯西定理,强行冲进“判别式不为0”的防御塔下,非常狂野的将P(x+iy)撕裂为u(x,y)+iv(x,y),干净利落,全身而退。
在沈奇强大凌厉的攻势下,P(x+iy)瞬间失去抵抗力,它老老实实交出自己的菊花:a+bi。
国决下半场第一题,破之。
得理就当不饶人,数竞赛场上绝对不能心软。
代数之后必是几何。
第二题是解析几何题,跟昨天的考题顺序类似。
高中阶段的平面解析几何是坐标几何的基础部分,坐标系中的图案看上去如波纹似蝴蝶,对称有对称的和谐,不对称有不对称的律动美感。
看上去越是简约的姑娘,得到她征服她的难度往往越高,因为她给出的条件苛刻。
沈奇在此处整整思考了一个小时,他可以画出蚌线、割圆曲线乃至蔓叶线,坐标系中的每一种曲线代表一种含义,对应一个答案。
沈奇必须尽快穿过坐标迷雾,捕捉到那条最优美最正确的窈窕曲线。
“是的,没错,对数螺线。”
沈奇终于动笔了,他邂逅了logρ=aθ,一条像海螺又像蜗牛的曲线,她转啊转啊,一圈一圈最终通过x轴与y轴的交界点o。
美丽的皮囊千千万万,最终的归宿只有一个,坐标系中的美丽姑娘们——曲线,即便她们再苛刻,也终将通过原点,回归朴实无华的初心。
“搞掂!”
时间过去了两个半小时,沈奇完成了国决下半场前两题的解答,算上昨天的三题,他总计完成五题。
“呼……”沈奇深呼吸一口,稍作休息,几个月之前他不敢想象,自己有机会参加全中国最顶级的高中生数学竞赛,成为TOP60之一。哦不不,晕倒退赛了一个,是TOP59之一。
此刻,只差最后一小步,沈奇或许就将触碰到人生中的第一枚金牌,全国级别的数学金牌。
第036章 没错,就有这种操作
“最后一题,还剩最后一题。”
沈奇虽然对前五题的解答有信心,但他不知道其他选手的状况。
如果要拿到金牌,最保险的办法就是答对全部题目。
当沈奇认真审视完最后一题,他觉得出这题的人简直就是魂淡。
最后一题是这样写的:
“时间穿越到公元前500年,而你是希帕苏斯的师弟,请证明不存在某个整数与整数之比,它的平方为2。”
“请小心,你的师兄希帕苏斯刚被你的老师毕达哥拉斯淹死,千万不要尝试几何作图法去完成证明,否则你也会被淹死。”
“一旦你被淹死,你将拿不到哪怕一分。”
是的,这就是全国数学联赛决赛的压轴题,就是这么魂淡。
题面转化为数学语言其实非常简单,即:请证明根号2是无理数。
无理数也就是无限不循环小数,比如1.41421356……它没有规律,不讲道理,就这么无穷无尽的延伸下去,从不出现循环。
即便初中生也知道根号2是无理数,并能写出至少一种证明方法,去证明根号2是无理数。
而沈奇能写出至少八种方法,证明根号2是无理数。
这题好简单呀,初二的学生都会做啦。
真的吗?
事实真是这样吗?
不,并不是。
这是国决压轴题,并没有你想象的那么Low。
因为在出题老师的设定中,沈奇穿越到了古希腊,成为了毕达哥拉斯的学生,希帕苏斯的师弟。
学数学的人不可能不知道毕达哥拉斯派,以及这个学派的创始人毕达哥拉斯。
毕达哥拉斯是数学史上的远古大神,他在萨摩斯岛上建立了一个神秘组织,集科学、宗教、哲学为一身,用现在的话说,这个组织极有可能就是传说中的“科学神教”。
毕达哥拉斯派的核心宗旨就是:数学研究抽象概念。
直到21世纪的今天,数学家们也承认毕达哥拉斯在2500年前提出的观点,数学研究的是抽象概念。
毕达哥拉斯一生中有两大爱好,研究数学,以及杀学生,越聪明成绩越好的学生越要杀。
希帕苏斯是毕达哥拉斯的得意弟子,他通过几何作图法,证明了不存在某个整数与整数之比,它的平方为2。这个方法记录于初中二年级的课本上,是初中生接触无理数的启蒙篇章。
然后希帕苏斯就被毕达哥拉斯绑起来丢海里喂鱼了,让你装逼?装逼者必须死。
毕达哥拉斯死后,希帕苏斯所创的几何证明法最终流传于世,他用生命换来的奇思妙思即今天初中课本上的“正方形无穷辗转相除算法求最大公约数”。
在国决压轴题特殊的题境中,沈奇被出题者设定为希帕苏斯的师弟,所以他不能使用几何法去证明根号2是无理数。否则会被出题者“淹死”,连一分都拿不到。
在沈奇掌握的至少八种证明方法中,当然也有其他办法,但他是希帕苏斯的师弟,生活在2500年前,那个时代尚不存在质数法,甚至连根号都没出现,所以其他的证明方法自动失效。
题面上写的是“请证明不存在某个整数与整数之比,它的平方为2”,而不是“请证明根号2是无理数”。
所以这题很变态。
这也印证了数学界的一句老话:simple is hard
越简单,越困难。
“纠结,纠结啊,在这么多变态的限制条件下,这题到底该如何破?”
沈奇显的有些焦虑,咔,他用力过猛,不小心将铅笔掰断,手心中满是汗水。
在国预以及国决前五题的解题过程中,沈奇并非没有遇到麻烦。
虽然遇到麻烦,但沈奇总归能get到一点点思路,并顺藤摸瓜最终得到正确答案。
而国决压轴题,“希帕苏斯的诅咒”使沈奇无计可施,毕达哥拉斯的死亡凝视穿越时空让沈奇如芒在背。
“我该怎么办,我能怎么办?这题出的太刁钻了,已远超一个高中生乃至大学生对数学的认知,这特么可能只有数学系的研究生甚至博士生才会做吧?”
这是沈奇几个月来遭遇的最大困境,这让他想起了学渣时期,题目写的字儿我全认识,就是不知道该怎么做。
时间一分一秒的过去,距交卷还剩半个小时。
沈奇在压轴题上耗费了2个小时写不出一个字,而前两题他一共花费2个小时。
“张老师,曹老师,田老师,你们教教我这题该如何破,要走那种路线?我完全没有思路啊!”学生在遇到难题时自然而然会想到老师,但沈奇发现,他从小学到高中,所有的数学老师都没教过一种方法,能不用希帕苏斯无穷几何法以及后世的代数方法,去证明根号2是无理数。
我们都知道人一出生就自带一个脑袋两条胳膊,难的是如何证明这个公认的事实,为什么不是三个脑袋六条胳膊,真正的原因是什么?是投胎技术导致的吗,如果投胎技术是真因,也请证明之。