“OK!”彼得尔爽快回应。
挂断电话,彼得尔才想起来自己还没吃午饭,拿起手机定了个外卖,彼得尔坐回电脑前,先是将论文拷贝一份发给米歇尔,然后继续浏览未读完的内容。
一边看,还一边啧啧称叹。
第三百五十章 搞定毕业论文
350章
另一边,华国。
经过一夜的思考,困惑程诺终于对自己的毕业论文有了新的思路。
关于两个引理的运用,程诺有他自己独到的见解。
所以,这天白天的课一结束,程诺便匆匆赶到图书馆,随便挑了一个没人的位置,拿出纸笔,验证自己的想法。
既然将两个引理强加进 Bertrand 假设的证明过程中这个方向行不通,那程诺想的是,能否根据这两个引理,得出几个推论,然后再应用到 Bertrand 假设中。
这样的话,虽然拐了个弯,看似比切比雪夫的方法还要麻烦不少。但在真正的结果出来之前,谁也不敢百分百就这样说。
程诺觉得还是应该尝试一下。
工具早已备好,他沉吟了一阵,开始在草稿纸上做各种尝试。
他有不是上帝,并不能很明确的知晓通过引理得出来的推论究竟哪个有用,哪个没用。最稳妥的方法,就是一一尝试。
反正时间足够,程诺并不着急。
唰唰唰~~
低着头,他列下一行行算式。
【设 m 为满足 pm ≤ 2n 的最大自然数,则显然对于 i > m, floor(2n/pi)- 2floor(n/pi)= 0 - 0 = 0,求和止于 i = m,共计 m 项。由于 floor(2x)- 2floor(x)≤ 1,因此这 m 项中的每一项不是 0 就是 1……】
由上,得推论1:【设 n 为一自然数, p 为一素数,则能整除(2n)!/(n!n!)的 p 的最高幂次为: s =Σi≥1 【floor(2n/pi)- 2floor(n/pi)】。】
【因为 n ≥ 3 及 2n/3 < p ≤ n 表明 p2 > 2n,求和只有 i = 1 一项,即: s = floor(2n/p)- 2floor(n/p)。由于 2n/3 < p ≤ n 还表明 1 ≤ n/p < 3/2,因此 s = floor(2n/p)- 2floor(n/p)= 2 - 2 = 0。】
由此,得推论2:【设 n ≥ 3 为一自然数, p 为一素数, s 为能整除(2n)!/(n!n!)的 p 的最高幂次,则:(a) ps ≤ 2n;(b)若 p >√2n,则 s ≤ 1;(c)若 2n/3 < p ≤ n,则 s = 0。】
一行行,一列列。
除了上课,程诺一整天都泡在图书馆里。
等到晚上十点闭馆的时候,程诺才背着书包依依不舍的离开。
而在他手中拿着的草稿纸上,已经密密麻麻的列着十几个推论。
这是他劳动一天的成果。
明天程诺的工作,就是从这十几个推论中,寻找出对Bertrand 假设证明工作有用的推论。
…………
一夜无话。
翌日,又是阳光明媚,春暖花开的一天。
日期是三月初,方教授给程诺的一个月假期还剩十多天的时间。
程诺又足够的时间去浪……哦,不,是去完善他的毕业论文。
论文的进度按照程诺规划的方案进行,这一天,他从推导出的十几个推论中寻找出证明 Bertrand 假设有重要作用的五个推论。
结束了这忙碌的一天,第二天,程诺便马不停蹄的开始正式Bertrand 假设的证明。
这可不是个轻松的工作。
程诺没有多大把握能一天的时间搞定。
可一句古话说的好,一鼓作气,再而衰,三而竭。如今势头正足,最好一天拿下。
这个时候,程诺不得不再次准备开启修仙大法。
而修仙神器,“肾宝”,程诺也早已准备完毕。
肝吧,少年!
程诺右手碳素笔,左手肾宝,开始攻克最后一道难关。
切尔雪夫在证明Bertrand 假设时,采取的方案是直接进行已知定理进行硬性推导,丝毫没有任何技巧性可言。
程诺当然不能这么做。
对于Bertrand 假设,他准备使用反证法。
这是除了直接推导证明法之外最常用的证明方法,面对许多猜想时非常重要。
尤其是……在证明某个猜想不成立时!
但程诺现在当时不是要寻找反例,证明Bertrand 假设不成立。
切尔雪夫已然证明这一假设的成立,使用反证法,无非是将证明步骤进行简化。
程诺自信满满。
第一步,用反证法,假设命题不成立,即存在某个 n ≥ 2,在 n 与 2n 之间没有素数。
第二步,将(2n)!/(n!n!)的分解(2n)!/(n!n!)=Π ps(p)(s(p)为质因子 p 的幂次。
第三步,由推论5知 p < 2n,由反证法假设知 p ≤ n,再由推论3知 p ≤ 2n/3,因此(2n)!/(n!n!)=Πp≤2n/3 ps(p)。
………………
第七步,利用推论8可得:(2n)!/(n!n!)≤Πp≤√2n ps(p)·Π√2n<p≤2n/3 p ≤Πp≤√2n ps(p)·Πp≤2n/3 p!
思路畅通,程诺一路写下来,不见任何阻力,一个小时左右便完成一半多的证明步骤。
连程诺本人,都惊讶了好一阵。
原来我现在,不知不觉间已经这么厉害了啊!!!
程诺叉腰得意一会儿。
随后,便是低头继续苦逼的列着证明公式。
第八步,由于乘积中的第一组的被乘因子数目为√2n 以内的素数数目,即不多于√2n/2 - 1 (因偶数及 1 不是素数)……由此得到:(2n)!/(n!n!)<(2n)√2n/2-1 · 42n/3。
第九步,(2n)!/(n!n!)是(1+1)2n 展开式中最大的一项,而该展开式共有 2n 项(我们将首末两项 1 合并为 2),因此(2n)!/(n!n!)≥ 22n / 2n = 4n / 2n。两端取对数并进一步化简可得:√2n ln4 < 3 ln(2n)。
下面,就是最后一步。
由于幂函数√2n 随 n 的增长速度远快于对数函数 ln(2n),因此上式对于足够大的 n 显然不可能成立。
至此,可说明, Bertrand 假设成立。
论文的草稿部分,算是正式完工。
而且完工的时间,比程诺预想的要早了整整一半时间。
这样的话,还能趁热的将毕业论文的文档版给搞出来。
搞!搞!搞!
啪啪啪~~
程诺手指敲击着键盘,四个多小时后,毕业论文正式完稿。
程诺又随手做了一份PPT,毕业答辩时会用到。
至于答辩的腹稿,程诺并没有准备这个东西。
反正到时候兵来将挡,水来土掩就是。
要是以哥的水平,连一个毕业答辩都过不了,那还不如直接找块豆腐撞死算了。
哦,对了,还有一件事。
程诺一拍脑袋,仿佛记起了什么。
在网上搜索一阵,程诺将论文转换为英文的PDF格式,打包投给了位于德古国的一家学术期刊:《数学通讯符号》。
SCI期刊之一,位列一区。
影响因子5.21,即便在一区的诸多著名学术杂志中,都属于中等偏上的水平。
……………………
PS:《爱情公寓》,哎~~
第三百五十一章 一份助教的工作
351章
半个月的时间,匆匆过去。
毕业论文彻底搞定,程诺也算了却一桩心事。
剩下的,只需要六月即将到来的毕业答辩就好。
这一天,度过一个月悠闲生活的程诺,不出意外被方教授的一纸召集令给叫了回来。
还是那间办公室,程诺敲门进来。
方教授坐在办公室一侧的沙发上,像是等待许久。
他招呼程诺坐到自己身边,笑呵呵的开口,“这一个月过的还算逍遥吧?”
程诺苦笑,“还算可以吧。不过我知道,我的清闲日子马上就要到头了!”
方教授这次叫自己来,肯定是有什么新的任务分配给自己。
项目课题不太可能?
方教授之前说过,如果不是T1、T2级别的数学院课题项目,根本不会让程诺去做,因为这样只是浪费时间,对程诺学术水平的提高毫无意义。
既然不是项目课题,那该会是什么呢?
该不会……
该不会又是世界猜想的证明吧?
这次会是哪个?
黎曼猜想,亦或是霍奇猜想?
程诺几乎已经可以看见,之后一年自己再次熬夜爆肝喝肾宝的苦逼景象。
方教授听得程诺的抱怨,再看到程诺越变越青的脸色,不由哈哈笑道,“程诺,不要这么悲观,这一次,我给你找的事情,可是一个轻松的工作?”
“哦?”程诺眼睛一亮,好奇心大起。
方教授先买了个关子,“程诺,你想不想体验一把,当老师的感觉?”
“老师,您的意思是?”程诺有些摸不着头脑。
“简单来说,我想让你担任这学期我的助教!”方教授面色认真的开口。
我?助教?!!
一时间,程诺的脑子有些发蒙。
虽然想到了万种可能,连方教授想让他来攻克哥德巴赫猜想这种可能性都想过,就是没料到,方教授会直接给出如此一个答案。
助教这个职位可不是听起来那么简单的。
相似小说推荐
-
与萌娃的文艺生活 (剑沉黄海) 起点VIP2019-01-04完结总推荐:28.81万大家好!我有个妹妹,今年5岁半。她是这个世界写给我的最美情书,我想把我们...
-
巨星家族 (大佑佑) 起点精品频道 VIP2018-08-17完结 5W收藏136.77万字 795.2万总点击 29.32万总推荐已过不惑之年的沈秋山意外...